Thursday, December 19, 2024
ad
HomeNewsThe University of Cambridge finds a new way to improve the storage...

The University of Cambridge finds a new way to improve the storage time of quantum information

As a part of the global drive for practical quantum computers and quantum networks, an international team of researchers at the University of Cambridge has made a development to retain the quantum coherence of quantum dot spin qubits.

Quantum dots are crystalline structures made out of many atoms. Every atom consists of a magnetic dipole moment that couples to the quantum dot electron and will suffer the loss of quantum information stored in the electron qubit.

Claire Le, who led the project from the University of Cambridge’s Cavendish Laboratory, mentioned that the development is a new regime for optically active quantum dots where you can switch off the interaction with nuclei and refocus the electronic spin over and over to find its quantum state alive.

While exploring the hundred-microsecond timescales for the first time, researchers were surprised to find that the electron only sees noises from the nuclei. Another thing that surprised the researchers was the sound from the nuclei. It was not as harmonious as initially anticipated, and there is a scope for further improvement in the system’s quantum coherence.

Read more: New Zealand Startup claims a sensory feeling of robots

Subscribe to our newsletter

Subscribe and never miss out on such trending AI-related articles.

We will never sell your data

Join our WhatsApp Channel and Discord Server to be a part of an engaging community.

Manjiri Gaikwad
Manjiri Gaikwad
Manjiri is a computer science graduate from Cummins college of engineering, Pune. She is a simple calm and composed person, who loves to write.

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Most Popular